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Topological Materials and Applications in Computing

Abstract

The field of topological materials sits at the intersection of math and physics and studies exotic materials with novel
properties, like a substance with an insulating interior but an indestructible conducting surface. Topological materials
present possibilities in every field where cutting-edge materials are in need, most notably computing. Yet outside of
research, the field remains largely in obscurity, which can be partially attributed to the field’s deep theoretical and
mathematical underpinnings. In this paper I introduce the necessary theoretical background to give a cursory overview
of the field. I discuss in specific the subfield of topological insulators and give an example of ongoing research. Finally,
I discuss computing applications in which topological materials may hold an important role.

1 Introduction to Topological Ma-
terials

The field of computing is at a crossroads. The conven-
tional scaling techniques that powered the exponential
growth of processing performance for the past half cen-
tury are reaching their theoretical limits, with prominent
leaders in computing—such as Jensen Huang, the CEO
of Nvidia—declaring that Moores law is already dead [1].
Meanwhile, the demand for compute grows greater and
greater, with industries such as information technology, fi-
nancial technology, scientific computing, and artificial in-
telligence pushing for evermore powerful machines capable
of consuming larger datasets and hosting more complex al-
gorithms.

Nearly all of todays processors are manufactured using
the CMOS process. The logic family, introduced in the
60s, consumes no power in steady state and is highly re-
sistant to noise. These favorable characteristics caused it
to quickly become the dominant process to create logic cir-
cuits. While initial increases in transistor densities were
facilitated by shrinking feature sizes, more drastic changes
were needed as miniaturization of the planar transistor be-
came impossible. Todays processors use the FinFET tran-
sistor morphology and tomorrows may use the GAAFET
(Gate-All-Around) morphology. Both reconfigure the lay-
out of the transistor to increase transistor density and in-
troduce more ways to shrink features.

However, as manufacturing processes become more and
more complex, researchers and industry leaders are look-
ing away from CMOS for the next generations comput-
ing technology [2]. Some promising architectures rede-
fine the way the transistor is switched. Tunnel field-effect
transistors (TFETS) exploit quantum tunneling to switch
current, while spin transistors use the two spin states of
electrons (spin up and spin down) to store and manipu-
late information. Other technologies move away from the
electron as the computing medium. Photonic computing
uses light to perform operations, offering higher energy
efficiency than conventional computers. Quantum com-
puting operates on qubits instead of bits, allowing it to
perform certain calculations at speeds exponentially faster
than conventional computers.

It is evident that as computing technologies becomes
more exotic, so do the materials required to construct de-
vices. For example, preserving the entangled states of
qubits is notoriously difficult, requiring todays quantum
computers to operate at temperatures near absolute zero.
This requires bulky cooling equipment that inflates quan-
tum computers to the size of rooms. For quantum com-
puting to become mainstream, that requirement needs to
be eliminated, requiring exotic materials that could host
qubits without near-zero temperatures.

The relatively obscure field of topological materials may
hold solutions for many of these future technologies. Exist-
ing at the intersection of mathematics, theoretical physics,
and semiconductors, the field studies exotic substances
with perplexing properties, such as insulating materials
with conducting surfaces that are impossible to puncture.

In this paper, I will introduce the mathematical and the-
oretical origins of topological materials and demonstrate
how it helps us characterize certain material systems. Of
specific research interest is the newer subfield of topologi-
cal insulators, which I will examine in detail. As a specific
example, I will highlight the work of Professor Simmonds,
whose research into topological insulators is ongoing right
here at Tufts. Finally, I will discuss applications of the
field in various upcoming technologies.

2 Theoretical Background

The field of topological materials is extremely math and
theory heavy—the mathematical groundwork for the field
was established decades before the first topological ma-
terials were experimentally verified. In this section I will
introduce the relevant concepts to the extent required for a
cursory understanding of the field. Of interest is topology
and quantum mechanics, specifically the second quantiza-
tion.

2.1 Topology

Topology is often called rubber-sheet geometry [3]. Like
geometry, it is concerned with the properties of shapes
and objects in space [4]. Unlike geometry, however, ex-
act lengths and positions arent relevant—objects can be
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squeezed, stretched, and pushed around while still consid-
ered the same: its as if the objects themselves were made
out of rubber. These smooth operations are called home-
omorphisms, from Greek meaning “similar shape.” The
objects they act on are called topological spaces because
we can imagine their surface as a space on which points
can be located.

When a topological space undergoes a homeomorphism,
certain properties are preserved. For example, when we
distort a donut into a mug, the number of holes is pre-
served: the hole of the donut becomes the handle of the
mug. A homeomorphism cannot change these properties;
hence, they are called topological invariants. A ball and a
mug would have different topological invariants because it
is impossible to turn one into the other without poking or
removing a hole—actions that are not continuous. Indeed,
a ball has zero holes while a mug has one, showing that the
number of holes would function as a topological invariant.
This specific topological invariant is called the genus of a
surface.

However, to really understand a topological invariant,
we would want a way to calculate the invariant of a partic-
ular topological space without relying on ambiguous defi-
nitions like the number of holes. (Ask a couple of people
to count the holes in a pair of pants and youre bound to
get different answers.) Hence, when examining a new class
of topological objects, finding a method to calculate the
invariant is usually of primary interest. Fortunately, for
surfaces, the Gauss-Bonnet theorem proves that the fol-
lowing integral of the Gaussian curvature, K, is equal to
a topological invariant known as the Euler characteristic

[5].
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The genus can then be calculated from the Euler char-
acteristic with the following relation: y = 2 — 2g.

Armed with the topological invariant, how do we pro-
ceed? Well, using the invariant, we can partition a set of
objects into sectors: objects with the same invariant will
go into the same sector and those with different invariants
will go into different sectors. We can then label each sector
with an element from an overarching set. This overarching
set gives deep insight into the rules we are using and the
objects we are classifying. For example, the set we would
use to label our surfaces would be Z, the integers. It sug-
gests that there are a countably infinite number of shapes
that cannot be transformed into each other.

2.2 Second Quantization

In the real world, we do not have the luxury of continuous
spaces and infinitely dividable surfaces. Instead, as we ob-
serve smaller and smaller scales, we encounter an entirely
different regime governed by rules alien to our understand-
ing of the macroscopic world. This is, of course, the study
of quantum mechanics.

Recall the derivation of the Schrodinger equation by ap-
plying de Broglies particle-wave equivalencies for energy
and momentum to the classical energy and momentum re-
lation [6]. We treat the result as a dispersion relationship
and get the following equation of the wavefunction.

Typically, this is a rather cumbersome way of working
with the Schrodinger equation. We would like to combine
the kinetic energy and potential energy terms on the right
into a single operation. This is done using the Hamilto-
nian operator (as denoted by H ), which encompasses all
energies of the system.
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However, we are still far from modeling any real-world
system—the equation only describes a single particle. As
it turns out, if we want to model multiple particles, we
need more than just a single one-dimensional wavefunc-
tion for each particle [7]. Rather, we need a n-dimensional
wavefunction, where n is the number of particles—the
complexity of the wavefunction increases exponentially as
we add more particles. Some quantum mechanical phe-
nomena allude to this complexity: for instance, quantum
entanglement describes a unique relationship between two
or more particles, so it would be impossible to exhibit such
a phenomenon when manipulating each wavefunction sep-
arately.

Adding to the complexity of the many-body Schrodinger
equation is that particles are indistinguishable. Suppose I
have a particle in one position and a particle in another.
The particles are identical: same type and same proper-
ties. If you were to have looked away, you would not be
able to tell whether I had swapped them or not. This
symmetry must be encoded in the Schrodinger equation.
Specifically, for our two-particle system, the following re-
lation must be true.

Y(r1,r2) = £Y(r2, m1)

The coefficient depends on the type of particle ex-
changed. For fermions, such as protons, neutrons, and
electrons, the coefficient is negative, and for bosons, such
as photons, the coefficient is positive.

Clearly all these symmetries are making our many-body
Schrodinger equation more and more difficult to solve. If
only there was a representation of our system in which
these symmetries were naturally encoded. ..

Enter the second quantization. Instead of denoting our
system with the state each particle is in, we denote the
number of particles in each state, called the occupation
numbers [8]. For example, |0,1,1,0) would represent a
four-state system with two particles in the second and
third state. If we were to swap the two particles, the
representation would be identical, reflecting the indistin-
guishability of the two particles. Conveniently, this rep-
resentation also allows us to create and remove particles
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and encode other properties of our particles, such as the
Pauli exclusion principle.

Specifically, the creation operator ¢! and annihilation
operator ¢ are used to add and remove particles. The
operator acts upon a state, resulting in a state with one
more or fewer particle. To represent an operation that
is impossible, such as removing a particle from an empty
state, the result should be 0, indicating that no such state
exists.

Lets model a simple system using the second quantiza-
tion. Suppose we have a one-dimensional string of sites
on which electrons can reside. We assume that the elec-
trons are spinless, so only one electron can occupy each site
(a state). The creation and annihilation operators would
then satisfy:

étoy = |1y, élo) =0,
ety =0, e1) = |0y,

We would also like to describe how particles can move
between states. We want something similar to the Hamil-
tonian operator in the first quantization: an operator that
acts on the current state and describes how the system will
change. In the second quantization, this is also called the
Hamiltonian. However, it operates on occupation numbers
rather than the wavefunction using creation and annihila-
tion operators rather than derivatives.

In our system, the electrons move between adjacent
states with the hopping amplitude ¢. We also want to
maintain a roughly constant density of electrons p, which
can be done using the density operator n. The Hamilto-
nian is as follows:

L
H = "telei +tel 6+ piy
1
Notice that the creation and deletion operators are ap-
plied in series. The first operator creates an electron at
the adjacent site and the second removes it at the cur-
rent site, effectively making the electron hop. This action
is characterized by the hopping amplitude coefficient t¢.
From here, we can derive the dispersion relation for the
system. Well define the creation and annihilation opera-
tors as functions of momentum. Recall that momentum is
the Fourier transform of position and that a single position
is represented by infinitely many momenta. In this case,
momentum, k, is restricted by the spacing between sites:
k = 2nn/L, where n is any integer and L is the length of
the system.
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With substitution we get the following, defining a =
x; — x;—1 as the spacing between sites.
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After a series of simplification steps, we get:

H= ZE(k)éLé, E(k) = 2tcos(ka) +
3

Notice that we’ve expressed the Hamiltonian in a way
where particles dont interact with each other; this is
known as “diagonalizing the Hamiltonian.” Additionally,
weve expressed the energy of each state as a function of
momentum; this is the dispersion relation. The dispersion
relation of this system is plotted in Figure 1.
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Figure 1. Dispersion relation derived from diagonalizing
the Hamiltonian. All states below p (the y axis) are filled.

3 Topological Materials

The field of topological materials is principally concerned
with how deformations of H , the Hamiltonian, affects
E(k), the dispersion relation. Specifically, the field is in-
terested in critical deformations of H that result in the dis-
persion relation changing its fundamental character, e.g.
a bandgap appearing or disappearing. To do so, the set of
potential dispersion relations is characterized using topol-
ogy, giving the field its name.

3.1 First Generation Topological Materi-
als

The application of topology in physics was first proposed
to explain the quantum hall effect (QHE) [9]. The quan-
tum hall effect is the observation that the hall resistance
of materials in low temperatures and high magnetic fields
take on quantized resistance values. Specifically:

Ogy = N—
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Thouless, Kohmoto, Nightingale, and den Nijs (TKNN)
showed that the discrete values taken on by resistance cor-
responded to values of certain topological invariant that
classified the materials Hamiltonian. The specific proof
of the invariant is beyond the scope of this discussion,
but it involves showing that the Hamiltonian of the mate-
rial and a torus share the same topological invariant, the
Chern number. The Chern number can be calculated by
integrating .%,,, the Berry flux (the flux associated with
a potential related to the wavefunctions phase), over the
Brillouin zone (the equivalent of the lattice’s unit cell in
momentum space):

1

However, a less mathematically intense and more intu-
itive explanation of the QHE is possible. Imagine electrons
traveling in a finite two-dimensional surface with a strong
applied magnetic field, such as the electrons in our hall
bar [10]. We know that moving charges in a magnetic
field curve to form orbits, as shown in Figure 2. However,
at the edges of the material, the electrons cant complete
their orbit, instead bouncing back within the surface as
they reach the edges; these are called skipping orbits.
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Figure 2. Electrons traveling through a surface with a
perpendicular applied magnetic field take on circular or-
bits. However, electrons at the edges are forced to bounce
back, forming skipping orbits.

The skipping orbits are unique because electrons are
only able to travel in one direction (relative to the edge
and applied magnetic field): they cannot backscatter. As
a result, skipping orbits have the highest conductance
possible, which is determined by quantum limits to be
Go = €%/h. The quantized hall effect is then simply the
conductivity of a single skipping orbit, e?/h, multiplied by
the number of skipping orbits, n.

3.2 The Tenfold Way

After the discovery of the TKNN invariant, it became of
interest to topologically classify more material systems.
As it turns out, it only takes ten discrete classes to do so

[8]. The class of a particular material system depends on
the presence or absence of certain symmetries in it.

The three symmetries of interest are time reversal sym-
metry, denoted by the operator T, particle-hole symmetry,
denoted by the operator C, and chiral symmetry, denoted
by the operator S. The material is classified by determin-
ing whether the symmetry exists in the system and how it
acts if it does.

The time reversal symmetry operator acts by revers-
ing time: On action, position is preserved but momen-
tum (being the derivative with respect to time) is negated.
Whether a system is time-reversal symmetric depends on
whether the Hamiltonian commutes with the operator, i.e.
. If it does, we can further characterize the system based
on how it is affected after applying the operator twice (TQ)
Since the operator cant affect the energy of the system, it
can only affect the phase of the wavefunction. This results
in two values of (72): 1 and -1. In total, there are 3 pos-
sibilities for time-reversal: absent, 72 = 1, and T2 = —1.

The particle-hole symmetry operator turns particle cre-
ation into hole creation. Like time reversal symmetry, the
symmetry can also take three values: absence, where the
operator doesnt commute with the Hamiltonian, c? =1,
where it does and applying it twice preserves phase, and
= —1, where applying it twice changes the phase by 7.
Combined with time reversal symmetry, this results in 9
possible classes total.

Chiral symmetry is different: it can be seen as the com-
position of the other two operators, S=C-T. Asa result,
it is uniquely determined when the other two symmetries
are present, preventing it from creating unique classes.
However, when both time reversal symmetry and particle-
hole symmetry are absent, chiral symmetry can take on
two values: absence and presence. Unlike the other two
operators, applying it twice always preserves phase. As a
result, it only creates one more class.

The particular topological invariant for each of these
classes is outside the scope of this discussion, but Table
1 shows the labeling set of the invariant under each class
and number of dimensions [11]. This table is called the
periodic table of topological invariants.

We see that when the invariant exists, it takes on two
values: Z, the natural numbers, or Zs, the set {0, 1}.
The Zs invariant is of particular interest because it char-
acterizes the second generation of topological materials,
topological insulators.

3.3 Topological Insulators

Topological insulators (TIs) are a more recently studied
subset of topological materials with the following prop-
erties: they have time reversal symmetry, specifically
72 = —1, and they are characterized by the Zs invariant
[12]. Specifically, when the Zo invariant is 0, the material
is said to be topologically trivial, and when the invariant
is 1, the material is nontrivial.

The physical interpretation of the invariant can be con-
sidered under the spin-orbit coupling (SOC) effect. The
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| ¢ | T |S]|d=1]d=2]|d=3]

A (unitary) 0 0|0 - Z -

standard
(Wigner-Dyson) Al (orthogongl) +1] 0 |0 - - -
ATI (symplectic) -1 10 ]0 - Zs Lo
chiral ATIT (chiral unity) 0 0 |1 Z - Z
(sublattice) BDI (chiral orthogonal) || +1 | +1 | 1 Z - -
CII (chiral symplectic) || -1 | -1 | 1 Z - Zs
D 0 |+1]0 Lo Z -
C 0 |-11]0 - Z -
BdG DI T 1 Z2 | Za Z
CI +1 [ -1 11 - - 7

Table 1. The "periodic table of topological invariants” classifies topological materials based on the presence and
absence of symmetries. The first two columns classify the material type (standard, chiral, or Bogoliubov-de Gennes)

and symmetry classes within. The next three columns spec

ify the symmetries present within the class (time reversal,

particle-hole, and chiral). 41 or -1 indicates the phase change upon double application of a symmetry while 0 denotes

the lack of a symmetry. Note that chiral symmetry doesn’t
last three columns list the labeling sets for the topological
and number of dimentions.

spin-orbit coupling effect originates from the magnetic in-
teraction of an electrons spin and the magnetic dipole gen-
erated by a moving charge (i.e. the electron). As spin can
only take on two values (called up and down), the effect
adjusts the energy of electron orbitals higher or lower by
small amounts depending on whether the orbitals spin is
oriented with or against the magnetic field. This results in
the fine structure of spectral lines in atoms; the observa-
tion that a single emission or absorption line corresponding
to the energy difference between two electron orbitals is ac-
tually composed of two or more neighboring but distinct
spectral lines.

However, in certain materials, the SOC effect is strong
enough to cause adjacent orbitals to cross. For example,
Figure 3 shows how in the well-known topological insulator
BisSes, the bismuth orbital and the selenium orbital swap
energies when SOC is considered [13]. Figure 4 shows the
dispersion relationship as SOC becomes more intense [12].

Alone, the SOC effect would not be noteworthy: though
consisting of different orbitals, the conduction and valence
bands still exist with a band gap in between, causing the
material to act like an insulator. However, at the inter-
section of two materials where SOC only causes inversion
in one, something interesting happens: the orbitals must
cross, momentarily causing the bandgap to close. This is
the critical point in Figure 4, and because the band gap is
now closed, the material conducts.

The Zo invariant is nontrivial when the orbitals cross
due to SOC and is trivial when they dont. The vac-
uum state, however, is trivial; therefore, the surface of
any nontrivial material (i.e. topological insulators) must
have a conducting surface. This results in the topologically
protected conducting surface of topological insulators: no
matter how the material is distorted, the surface of the
material will stay conducting while the interior stays in-

cause phase change and can only take the value of 1. The
invariant (if it exists) as a function of the symmetry class

)

(I D)

Figure 3. Orbital from bismuth crosses orbital from se-
lenium after consideration of spin-orbit coupling (IV).

()

sulating.

The surfaces of topological insulators exhibit another
unique phenomenon: spin-momentum locking. The effect
describes how the spin of an electron traveling across the
materials surface is always locked perpendicular to its di-
rection of motion. The effect results from certain features
on the TIs 2D dispersion relation that resemble two cones
stacked against each other with touching points, called
Dirac cones. Figure 5 shows the Dirac cone with electron
spins shown as arrows. As according to SOC, electrons
with a spin oriented one way relative to momentum (blue)
take lower energies than electrons oriented the other way.
Since the Fermi level exists at the intersection of the cones,
electrons end up only taking the blue orientation, locking
spin respective to momentum.
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Figure 4. Dispersion relation as SOC becomes more in-
tense. At the critical point, the two orbital energies meet,
removing the band gap. As SOC becomes even more in-
tense, orbitals originally in the valence band (blue) form
part of the conduction band (grey) and vice versa.

An interesting side effect of spin-momentum locking
is backscattering protection. For an electron to reverse
its momentum (by scattering off the crystal lattice), the
electron must simultaneously reverse its spin. This is,
however, extremely unlikely, protecting electrons from
backscattering and creating behavior like superconductiv-

ity.

3.4 An Example of Ongoing Research

Research into topological materials continues to be very
intense. A couple of potential research directions include:
studying other unique states like saddle-like states, heli-
coid states, Seifert states, and linked-node states on TI
surfaces; constructing TI-based magnets with unique elec-
tromagnetic properties like the layer Hall effect; advancing
theory to find more unique topological materials; develop-
ing TIs capable of hosting exotic particles like Majorana
fermions; and much more [12].

I would like to highlight one ongoing research effort at
Tufts University, of which I am lucky to be a part of. The
Simmonds lab is working with S. Schmid et al. to develop
topological insulators based on InAs/GaSb quantum wells
[14].

The following is a brief description of our work. The
InAs/GaSb material system is unique in that it has a
broken-gap Type-III band alignment: the top of the GaSb
valence band is above the bottom of the InAs conduction
band. When the two materials are layered, this results in
GaSb valence band holes positioned beside InAs conduc-
tion band electrons. Typically, electrons from GaSb would
then simply tunnel to recombine with holes from InAs, but
because the two layers are thin enough to form quantum
wells, electron and hole energies are quantized and take
different energies.

By adjusting the widths of the two quantum walls, S.
Schmid et al. was able to adjust hole energies above elec-

Topological Dirac cone state
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Figure 5. Dirac cone dispersion relation. Energy is plot-
ted against momentum in the two axes of the surface. The
two possible orientations of spin relative to momentum is
also shown as blue and green arrows. Note that the blue
orientation is always at a lower energy than the green ori-
entation. Also note that the Fermi level is at the intersec-
tion of the cones.

tron energies similarly to the configuration within topolog-
ical insulators, and as a result, exhibit nontrivial behavior
like the creation of Van Hove singularities, a unqgiue feature
in the materials density of states.

We are working with the group to fabricate quantum
walls on differently oriented substrates, specifically (111)
instead of (100). We expect that a device fabricated on
(111) orientated substrate will exhibit stronger nontrivial
behavior, including a widening of the inverted band gap.

4 Comparison to Conventional

Materials

Topological materials are not fully understood yet. How-
ever, for relatively well-known topological materials (es-
pecially TIs) like BisSes, efforts are already underway to
apply their unique properties to solve real-world problems.

4.1 Topological FETs

The most obvious reaction after encountering a new ma-
terial system like topological insulators is to try to make a
transistor out of it. Topological insulators seem especially
fit in a transistor because the materials inherit backscat-
tering protection due to spin-momentum locking suggests
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that it might lend itself to desirable transistor characteris-
tics like high electron mobility [15]. However, an immedi-
ate question is how the transistor would be switched: the
metallic surface state of a TI suggests that modulating
carrier density would be difficult if not impossible.

The first studies in topological field effect transistors
(TIFETSs) used BisSes as the channel material. A FET
was constructed using a 100nm film of BisSes with gates on
top and bottom to independently control carrier densities.
Evidence from the fabricated device suggested that current
was able to flow through three channels of the material:
the top and bottom conducting surface states and the bulk
material. Additionally, an applied electric field through
the gates was able to change the dominant carrier type
from electrons to holes, a property essential for eventually
building CMOS circuits.

Subsequent experiments attempted to reduce the elec-
tron density in the bulk state. The most direct way was
to shrink the device: sufficiently small samples of TT thin
films exhibited the off state, indicating the depletion of
bulk doping. However, miniaturization was not enough to
invert the doping type. Instead, introducing Ca dopants
into the Bi2Se3 crystals was necessary to change the dom-
inant carrier from n-type to p-type.

Continued efforts in creating a competitive TIFET con-
verged to a design similar to conventional GAAFETSs. In
the design, a 50nm to 150nm wide BisSes nanowire is
coated with a dielectric and then a conductive gate. Ex-
perimental voltage-current curves showed promising signs
for TI-based CMOS processes. However, two main char-
acteristics of the device are of concern. First, the mea-
sured carrier mobility decreased significantly as the ambi-
ent temperature was increased to normal operating tem-

peratures: at 77K the electron mobility was 1300%‘?:
while at room temperatures it decreased to 100 C\‘}‘;. This

significantly underperforms nanowires made from silicon
and suggests that switching behavior is primarily real-
ized by the bulk, neglecting any advantages from sur-
face backscattering protection. Secondly the sub-threshold
swing of the constructed TIFET is poor compared to con-
ventional transistors and especially tunneling FETs. The
sub-threshold swing is directly related to the voltage re-
quired to operate the FET and as the industry moves to-
wards lower voltages capable of faster switching and lower
power consumption, the high sub-threshold swing may be
another dealbreaker.

In addition to experimental studies of BisSes based
FETSs, many theorical and experimental studies of FETs
based on other topological materials are underway. One
study proposed a transistor that used the gate to modu-
late backscattering in HgTe nanoribbons. Another study
used the gate to control the energy gap within the mate-
rial by coupling edge states to current channels. A third
study used an electric field to control whether the TI was
in its topological state or its trivial state. A fourth used
the piezoelectric effect to modulate the phrase of the TT as
a switching mechanism. Clearly, the unique mechanics of

topological insulators give way to a myriad of possibilities
in creating transistors.

Figure 6 compares potential FET designs based on con-
ventional materials and topological insulators. The estab-
lished benchmarks of switching delay and switching energy
are shown. For example, high-performance FETSs consume
the most energy, but they also have the highest switching
speeds, making them competitive. On the other hand, the
homojunction tunnel FETSs use an order-of-magnitude less
energy but has a much higher switching delay. The figure
shows that TI-based FETs can potentially bring several
order-of-magnitude improvements on both metrics, moti-
vating continued research into TIFET's even if they are not
yet viable.
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Figure 6. Comparison of next generation FET designs
based on conventional materials and topological materi-
als. Future TI-based FET designs may provide order-of-
magnitude improvements in the standard industry bench-
marks of switching delay and switching energy.

4.2 Magnetic Random Access Memory

The previous section focused on the exploitation of TIs
innate backscattering protection. However, the ability of
TIs to manipulate spin lends itself to other technologies as
well.

Magnetoresistive random-access memory (MRAM) is a
type of memory that stores data by changing the magneti-
zation alignment of a ferromagnetic material [16]. The pri-
mary component in MRAM is the magnetic tunnel junc-
tion, which consists of two ferromagnetic plates stacked on
top of each other with a thin insulating film in between.
When a voltage applied between the two plates, electrons
can tunnel through the insulating film and create a cur-
rent. If the two plate are magnetized in the same direction,
tunnelling is more efficient, and the current is higher. Con-
versely, if the plates are magnetized in opposite directions,
the current is lower. This is because electrons orient their
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spins to the magnetic field theyre in. For an electron to
tunnel to a material with a different magnetic orientation,
it would have to additionally change its spin, reducing the
probability for the tunneling to occur.

Reading from a magnetic tunnel junction is as simple as
measuring its resistance, but writing to it requires chang-
ing the magnetic alignment of one of the plates (referred
to as the writable plate). The first MRAM devices accom-
plished this by inducing a magnetic field at the writable
plate using a current, i.e. by creating an electromagnet.
However, this design suffered from high power consump-
tion because of the magnitude of current required to create
the magnetic field. Additionally, as the device is scaled
down, the field tends to overlap with adjacent cells, caus-
ing additional unwanted writes. This limits the storage
densities that MRAM devices can reach.

Second generation MRAM devices use a different phe-
nomenon to remagnetize the writable plate: spin-transfer
torque (STT). When an electron changes its spin to coin-
cide with the magnetic alignment of the surrounding mate-
rial, the orientation of the material is also slightly changed.
If enough electrons are injected with opposite spins, the
orientation of the material can be swapped, constituting a
write. Using spin-transfer torque to reorient the writable
plate uses significantly less energy than inducing a mag-
netic field and additionally allows the cell to miniaturized
beyond scales possible in first generation MRAM devices.

A separate phenomenon, spin-orbit torque (SOT) can
also be used to change the magnetic orientation of a ma-
terial [17]. Tt relies on coupling a material with strong
spin-orbit coupling (SOC) next to a ferromagnetic mate-
rial. When a current passes through the material with
SOC, a spin polarized current is generated. This current
then changes the alignment of the ferromagnetic material.
Typically the current required for SOT is much lower than
that required for STT.

The mechanism for SOT in topological insulators is
slightly different [15]. Recall that spin-momentum lock-
ing causes spin to be locked perpendicular to the electrons
momentum. Should an electric field be applied to the
topological insulator, a Hall current is generated. How-
ever, because of spin-momentum locking, the spins of the
electrons in the Hall current disproportionally accumulate
in one direction. This creates the spin polarized current.

As it turns out, SOT in topological insulators is much
stronger than SOT in other SOC materials. Refer to Fig-
ure 7 for a comparison. While metals are more conductive
than TTs, certain TIs have a comparable if not much higher
spin Hall conductivity. Additionally, the spin Hall angle,
which to some extent represents the ability for the mate-
rial to generate spin polarized currents, is much higher for
TIs. Both results show that TTs are a strong candidate as
building blocks for future MRAM technologies.

5 Conclusion

Topological materials are one of the most promising fron-
tiers in material science. By mathematically characteriz-
ing materials’ electronic properties, the field has illumi-
nated exotic substances with novel properties. In this pa-
per we discussed the mathematical and theoretical origins
of the field, then covered its evolution thereon. Origi-
nating from the effort to study the quantum hall effect,
topological materials now encompass several generations
of materials.

One such class of materials are topological insulators,
which host unique properties like spin-momentum cou-
pling and protected surface states. Research into apply-
ing these properties for solving real-world problems is al-
ready underway, and we covered two of these potential
applications: topological FETs and MRAM. However, un-
derstanding of topological materials is far from complete,
and topological materials are under intense research ef-
forts. We covered one such ongoing research effort occur-
ring right here at Tufts.
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Figure 7. Comparison of conventional SOT metals and
TIs. In (a), the conductivity and hall conductivity are
ranked. While metals are more conductive than TIs due
to a higher density of states, TIs have higher hall conduc-
tivity. In (b), the spin hall angle of different materials are
compared and again shows potential for TTs.



Lawrence Qiu Topological Materials EE113 Fall 2023

Bibliography

https://medium.com/predict/introduction-to-gaafet-the-next-big-phase-of-computer-chip-
manufacturing-84e63abelldd

https://irds.ieee.org/home/what-is-beyond-cmos
https://uwaterloo.ca/pure-mathematics/about-pure-math/what-is-pure-math/what-is-topology
https://www.math.colostate.edu/~renzo/teaching/Topologyl0/Notes.pdf
https://www.physics.upenn.edu/~kane/pubs/chapl.pdf

A Tutorial on Quantum Mechanics and Energy Bands
https://quantum.lassp.cornell.edu/lecture/many_particle_wavefunctions
https://grushingroup.cnrs.fr/topointro2021/
https://www.imsc.res.in/~hbar/PDFs/ti.pdf
https://topocondmat.org/w3_pump_QHE/QHEedgestates.html
https://arxiv.org/pdf/0803.2786.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202201058
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.045122
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.155304
https://www.nature.com/articles/s42005-021-00569-5
https://www.techtarget.com/searchstorage/definition/MRAM

https://www.nist.gov/programs-projects/theory-spin-orbit-torque

10


https://medium.com/predict/introduction-to-gaafet-the-next-big-phase-of-computer-chip-manufacturing-84e63abe11dd
https://uwaterloo.ca/pure-mathematics/about-pure-math/what-is-pure-math/what-is-topology
https://www.math.colostate.edu/~renzo/teaching/Topology10/Notes.pdf
https://www.physics.upenn.edu/~kane/pubs/chap1.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202201058
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.045122
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.155304
https://www.nature.com/articles/s42005-021-00569-5
https://www.techtarget.com/searchstorage/definition/MRAM
https://www.nist.gov/programs-projects/theory-spin-orbit-torque

